

ИК А3 «Оборудование для магистральных и распределительных электрических сетей»

Сфера деятельности:

- ❖ Коммутационные аппараты (выключатели, выключатели нагрузки, разъединители, заземлители и пр.)
- Токоограничивающие устройства
- Ограничители перенапряжений
- ❖ Конденсаторы
- ❖ Изоляторы, высоковольтные вводы
- ❖ Измерительные трансформаторы
- ❖ Прочие виды в/в оборудования, не охваченные другими комитетами СИГРЭ

ИК АЗ

«Оборудование для магистральных и распределительных электрических сетей»

Направления деятельности:

Проектирование и разработка. Проектно-конструкторские работы

Требования к оборудованию в изменяющихся сетях

Интеллектуализация оборудования

Мониторинг и диагностика оборудования

Новые и улучшенные методы испытаний

Техническое обслуживание, ремонт и управление сроком службы

Методы снижения перенапряжения и перегрузки

С учетом различий в конструкции и требованиях к оборудованию для магистральных и распределительных сетей

Сессия СИГРЭ-47

Рабочая программа делегации АО «НТЦ ФСК ЕЭС»

- Постер-сессия (Poster session).
- Дискуссионное заседание (Group discussion meeting) по обсуждению представленных докладов.
- Заседание Исследовательского комитета SC A3.
- Профильные семинары по тематике Исследовательского комитета А3.
- Техническая выставка.
- Встречи с представителями зарубежных компаний, подписание соглашений.

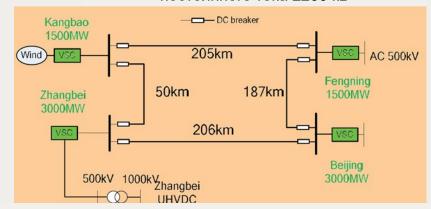
Дискуссии по докладам. Постер-сессия

Предпочтительная тема PS1: Требования к оборудованию для магистральных и распределительных сетей постоянного и переменного тока

- Требования к оборудованию постоянного тока для разветвленных сетей высокого напряжения
- Меры по повышению надежности
- Разработки в области испытаний и контроля

15 докладов по тематике:

- **Изоляторы**
- Повышение давления в КРУЭ
- Разъединители и заземляющие устройства
- Высоковольтные распределительные устройства постоянного тока
- Управляемая коммутация
- Эффективность высоковольтных выключателей

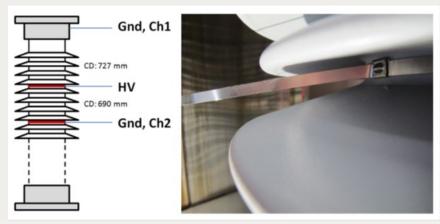


PS1: Требования к оборудованию для магистральных и распределительных сетей постоянного и переменного тока

Гибридный высоковольтный выключатель постоянного тока ±200 кВ

Четырехтерминальная сеть постоянного тока в Чжанбэй

Прототип гибридного высоковольтного выключателя постоянного тока 500 кВ



Испытание прототипа выключателя 500 кВ на прерывание (размыкание/срабатывание)

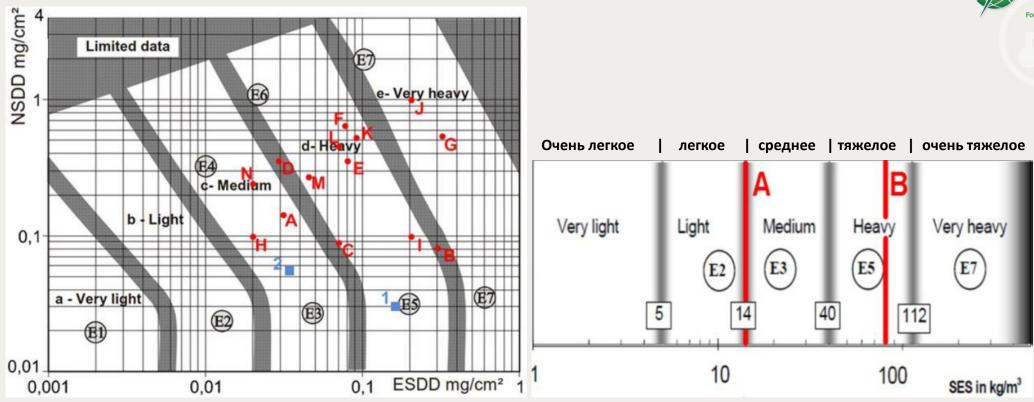
A3-105. Разработка модульного каскадного гибридного выключателя постоянного тока на 500 кВ

PS1: Требования к оборудованию для магистральных и распределительных сетей постоянного и переменного тока

Установка для испытаний на трекинго-эрозионную стойкость

Средний уровень гидрофобности

Процедура нанесения загрязнения



Высокий уровень гидрофобности

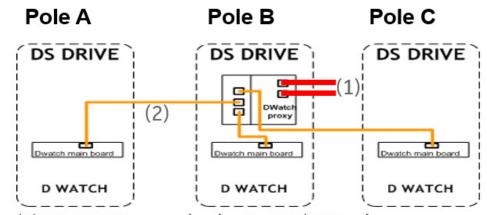
<u>A3-109.</u> Разработка требований к испытаниям и поверке опорных изоляторов подстанции с вулканизацией при комнатной температуре в сети переменного тока

PS1: Требования к оборудованию для магистральных и распределительных сетей постоянного и переменного тока

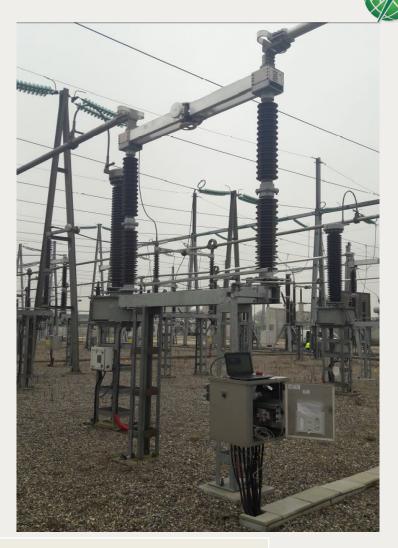
A3-108. Технические требования к конструкции и опыт испытаний композитных полых сердечников изоляторов в отношении характеристик загрязнения при напряжении постоянного и переменного тока

ИК А3. Постер-сессия

Предпочтительная тема PS2: Управление сроком службы оборудования

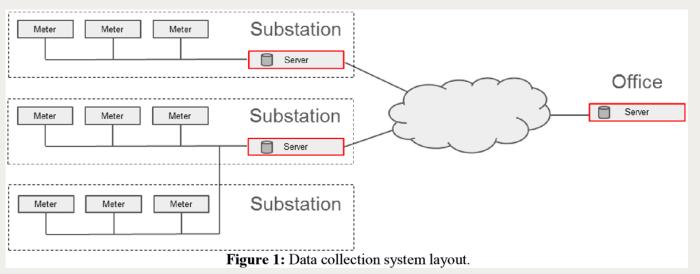

- Диагностика и прогнозирование
- Влияние экологических и эксплуатационных условий на срок службы.
- Опыт и меры противодействия перегрузкам и перенапряжениям

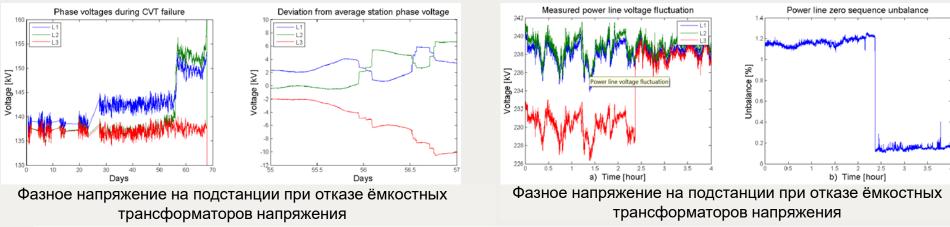
7 докладов по тематике:


- Онлайн мониторинг
- Металлооксидные разрядники (MOSA)
- Измерительные трансформаторы

PS2: Управление сроком службы оборудования

- (1) F.O. 61850 comunication to PRP/HSR unit
- (2) C.W. Modbus comunication to Dwatch drive





A3-206. Цифровой разъединитель для цифровой подстанции

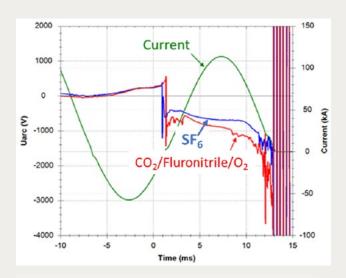
PS2: Управление сроком службы оборудования

А3-207. Онлайн мониторинг емкостных трансформаторов напряжения с использованием счетчиков энергии

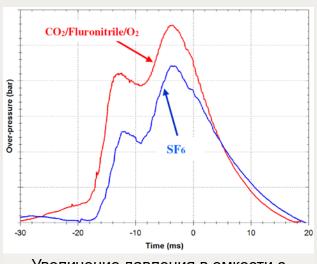
ИК А3. Постер-сессия

Предпочтительная тема PS3: Новые разработки оборудования для магистральных и распределительных сетей

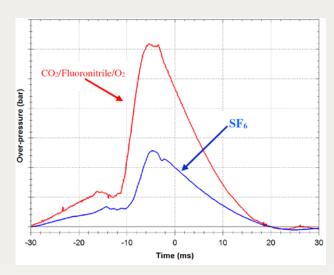
- Новые разрабатываемые распредустройства и перспективное оборудование
- Коммутация с альтернативами элегазу, оборудование с применением новых материалов
- Внедрение интеллекта в оборудование постоянного и переменного тока:



11 докладов по тематике:


- Альтернативы элегазу
- Генераторные выключатели
- Разработка распределительных устройств среднего напряжения
- Коммутация емкостных токов

PS3. Новые разработки оборудования для магистральных и распределительных сетей



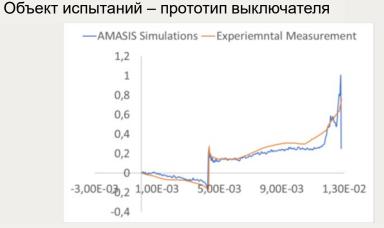
Ток отключения и напряжение электрической дуги для гексафторида серы (элегаза) и смеси CO2/Фторонитрила/O2

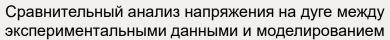
Увеличение давления в емкости с гексафторидом серы (элегаз) и смеси CO2/Фторонитрила/О2 во время отключения К3

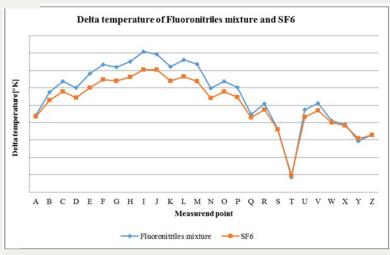
Увеличение давления в емкости с гексафторидом серы (элегаз) и смеси CO2/Фторонитрила/O2 во время отключения K3

A3-301. Оценка эффективности смеси CO2 / фторнитрила / O2 в КРУЭ и баковых высоковольтных автоматических выключателях при больших токах K3

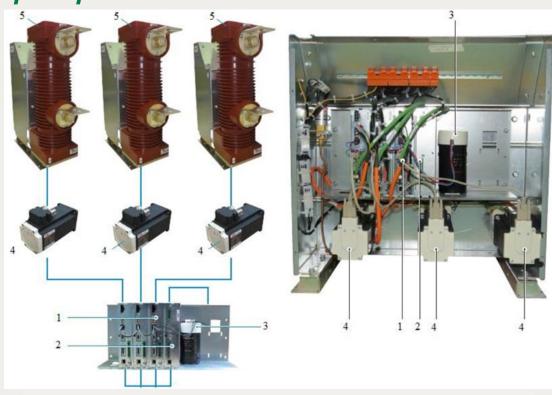
PS3. Новые разработки оборудования для магистральных и распределительных сетей



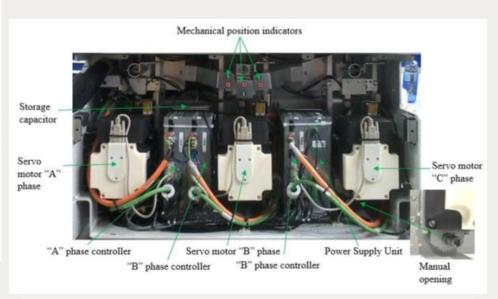



Объект испытаний - прототип быстродействующего заземлителя

Объект испытаний прототип разъединителя



Результаты испытаний на нагрев номинальным током


<u>АЗ-307.</u> Применение в КРУЭ гептафторизобутиронитрила в смеси с фоновым газом СО2

PS3. Новые разработки оборудования для магистральных и распределительных сетей

Архитектура выключателя DS1 (модуль управления полюсами (1), модуль питания (2), накопительный конденсатор (3), сервопривод (4), полюса (5))

Система управления и контроля выключателя

А3-304. Эволюция выключателей среднего напряжения: новые разработки и возможные применения

Рабочие г	NVIIILI	NK V3	2
I doo inc i	Pyllipi		4

PΓ A3.29

Старение и износ оборудования высоковольтных подстанций.

В 2018 г. рабочая группа закончила свою работу, опубликовав Техническую Брошюру

Рабочая группа была сформирована в 2010 г.

PF A3.30

Влияние перенапряжений на оборудование подстанций.

Руководитель Antonio Carvalho (Бразилия)

Рабочая группа была сформирована в 2010 г.

В процессе эксплуатации оборудование подвергается различным воздействиям: перегрузкам, перенапряжениям; в конце срока службы оборудования может оказаться, что оно не в состоянии функционировать полноценно.

Задача рабочей группы – дать рекомендации для принятия решения о возможности продлении срока службы такого оборудования.

<u>PΓ A3.31</u>

Измерительные трансформаторы с цифровым выходом.

Руководитель Farnoosh Rahmatian (Канада)

Рабочая группа была сформирована в 2011 г.

Использование цифрового выхода в измерительном трансформаторе требует развития методов испытаний/проверки их точности на заводе-производителе, калибровки в эксплуатации, которая может стать более частой с отменой госконтроля электроэнергетических компаний.

В фокусе внимания рабочей группы находятся вопросы проверки точности, калибровки.

Рабочие группы ИК А3						
ОРГ (CIGRE-CIRED) АЗ.32 Неинтрузивные методы контроля распределительных устройств среднего и высокого напряжения. Руководитель Nenad Uzelac (США)	В 2018 г. рабочая группа закончила свою работу, опубликовав Техническую Брошюру					
РГ АЗ.33 Опыт эксплуатации оборудования для последовательной/поперечной компенсации. Руководитель Guofu Li (КНР)	Рабочая группа исследует переходные процессы при коммутациях с учетом развития продольной и поперечной компенсации, включая непосредственно требования к средствам компенсации.					
ОРГ А3/В5.34 Технические требования и возможности современного коммутационного оборудования постоянного тока. Руководитель Christian Franck (Швейцария)	Рабочая группа рассматривает технические требования на коммутационное оборудование постоянного тока для различных приложений, типа ЛЭП ПТ с ответвлениями и присоединениями ветроэлектростанций.					

Рабочие группы ИК А3					
РГ АЗ.35 Ввод в эксплуатацию управляемого коммутационного оборудования.	Целью рабочей группы было обновление руководства по вводу в эксплуатацию оборудования с управляемой коммутацией. В 2018 г. рабочая группа закончила свою работу, опубликовав Техническую Брошюру.				
Руководитель André Mercier (Канада)					
РГ А3.36 Мультифизическое моделирование для расчета превышений температуры. Руководитель Martin Kriegel (Швейцария)	Исследуется применение и сравнение разных мультифизических моделей и средств инжиниринга для расчета превышений температуры.				
PΓ A3.38	Сбор, анализ и обобщение опыта испытаний и коммутаций				
Включение шунтирующих конденсаторов в магистральных и распределительных сетях.	конденсаторных батарей в распределительных сетях, оценка коммутационных характеристик оборудования среднего напряжения, как работа переключающего устройства связана с				
Руководитель Edgar Dullni (Дания)	бросками токов включения.				

Рабочие группы ИК А3

PΓ A3.39

Применение и опыт эксплуатации металл-оксидных разрядников.

Руководитель Robert le Roux (Ирландия)

<u>PΓ A3.40</u>

Технические требования и опыт эксплуатации коммутационного оборудования постоянного тока среднего напряжения.

Руководитель Christian Heinrich (Германия)

ΡΓ Α3.41

Прерывания и коммутации при применении коммутационного оборудования, не содержащего элегаз.

Руководитель René Smeets (Нидерланды)

Исследование надежности, анализ отказов.

В 2018 г. рабочей группой подготовлена форма анкеты для анализа надежности и отказа на основе данных, которые предполагается получить в онлайн-опросе.

Создана в 2018 г.

Сбор и анализ опыта эксплуатации коммутационного оборудования постоянного тока напряжением до 52 кВ, анализ прототипов.

Анализ технических требований, для различных конфигураций системы. Разработка рекомендаций по требованиям к испытания

Создана в 2018 г.

Сбор данных о прерывании и коммутации оборудования, не содержащего SF6, преимущества и недостатки, анализ опыта эксплуатации, оценка эффективности, долгосрочной стабильности и влияния на работы по техническому обслуживанию, разработка рекомендаций

ИК АЗ

Рабочие группы ИК А3

PΓ A3.42

Анализ недавних отказов измерительных трансформаторов воздушных распредустройств.

Руководитель Helvio Azevedo-Martins (Бразилия)

OPΓ A3.43/CIRED

Средства управления жизненным циклом распределительных устройств на основе данных от систем мониторинга.

Руководитель Nicola Gariboldi (Швейцария)

Создана в 2018 г.:

Сбор и анализ данных по отказам с учетом срока службы, обстоятельств, типа, особенностей конструкции. Анализ опыта эксплуатации: замена, контроль и диагностика, отчетность, оценка рисков, спецификации. Рекомендации по применению методов контроля, обслуживания и диагностики. Моделирование сверхбыстрых переходных процессов. Рекомендации по снижению рисков

Создана в 2018 г.

Определение индикаторов критического состояния, оценки "индекса здоровья". установление критерии для Предоставление пользователю опыта применения систем периодической непрерывного контроля диагностики, информацию для решения о завершении эксплуатации и последующих шагах.

Рабочие группы ИК АЗ

WG A3.XX. Идентификация частотных характеристик традиционных и нетрадиционных измерительных трансформаторов напряжения (Identification of frequency response characteristics of conventional and non-conventional voltage instrument transformers)

WG A3.XX. Ограничения в эксплуатации высоковольтного оборудования из-за частых перенапряжений

(Limitations in Operation of High Voltage Equipment resulting of Frequent Temporary Overvoltage's)

Создание новых рабочих групп

WG A3.XX. Закупки, контроль качества, ввод в эксплуатацию оборудования

(Procurement, Quality Control, Commissioning of Equipment)

WG A3.XX. Техническая оценка технологий коммутации генераторов на электростанциях

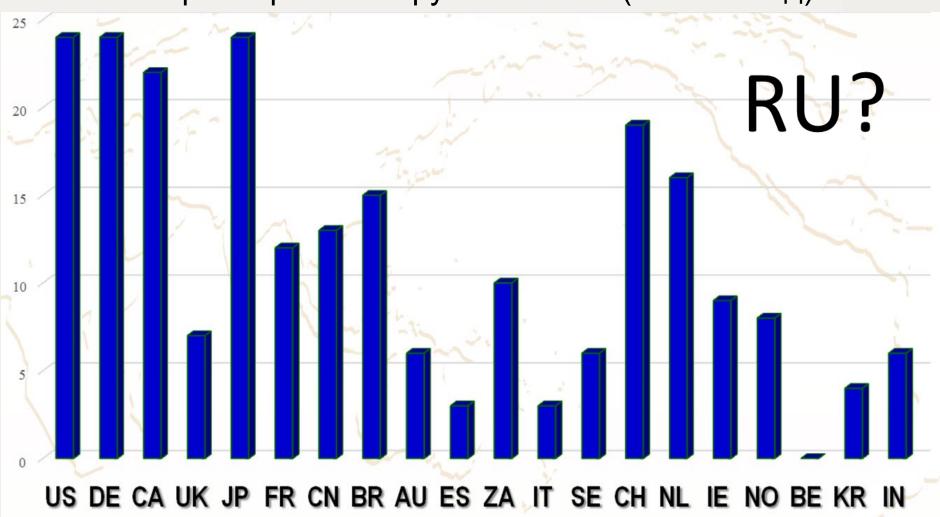
(Technical evaluation of generator switching technologies in power generation plants)

Рабочие группы ИК АЗ

В 2018 г. завершили свою деятельность 3 рабочие группы, опубликовав брошюры:

РГ АЗ.29 Брошюра 725 Старение оборудования высокого напряжения и возможные контрмеры

Объединенная РГ Брошюра 737 Неинтрузивные методы оценки состояния распределительных устройств среднего и высокого напряжения


PГ A3.35 Брошюра 757

Рекомендации по вводу в эксплуатацию и эксплуатации проектов с управляемой коммутацией

Рабочие группы ИК А3

Участие стран в рабочих группах ИК АЗ (на 2018 год)

Green book - «Зеленая» книга

Оборудование для магистральных и распределительных электрических сетей

Разделы книги

- 1. Общая информация о деятельности комитета А3
- 2. Устройства коммутации
- 3. Механизмы коммутации
- 4. Выключатели переменного тока
- 5. Системы аварийной сигнализации и оповещения
- 6. Ограничение тока КЗ
- 7. Управляемая коммутация
- 8. Выключатели высокого напряжения постоянного тока
- 9. Управление сроком службы коммутационного оборудования
- 10. Новые технологии

Встречи с представителями зарубежных компаний

Подписание соглашений

1. Соглашение между АО «НТЦ ФСК ЕЭС» и Shenyang Transformer Research Institute (STRI) о сотрудничестве в области оценки соответствия продукции национальным стандартам, техническим регламентам и иным нормативно-техническим документам.

2. Соглашение между АО «НТЦ ФСК ЕЭС» и DNV GL (КЕМА) о совместном проведении в 2019 году в Москве второй регулярной международной конференции «Цифровая подстанция. Стандарт МЭК 61850» (цифровизации электрических сетей при обеспечении совместимости оборудования разных технологических систем.

ник аз

Россия

Техническая выставка

Макеты инновационных разработок

Национальный проект «Разработка и строительство высокотемпературной сверхпроводниковой кабельной линии постоянного тока протяженностью 2500 м в Санкт-Петербурге»

Национальный проект «Цифровая подстанция». Голографическая 3-Д презентация

Национальный проект «Энергоэффективная подстанция»

Предстоящие события с участием ИК А3

События

<u>23-26.04.2019 (Хакодате, Япония).</u> Конференция CIGRE - IEC 2019 «Конференция по большим электрическим системам сверх - и ультравысокого напряжения» (ИК A2, A3, B1, B2, B4, C4 и D1)

<u>02-04.07.2019 (Москва, Россия).</u> II Международная конференция-выставка «Цифровая подстанция. Стандарт IEC 61850. Цифровизация электрических сетей»

7-13.09.2019 (Бухарест, Румыния). Коллоквиум CIGRE - CMDM 2019 «Будущие вызовы для оборудования для оборудования подстанций среднего и высокого напряжения» (ИК АЗ, ВЗ)

<u>23-28.08.2020 (Париж, Франция).</u> 48-я Сессия СИГРЭ

.

<u>2023 г. (Москва, Россия).</u> Коллоквиум СИГРЭ (ИК А1, А3, В3, D1)

Предпочтительные темы ИК АЗ на 48-й Сессии

ПТ 1: ПЕРСПЕКТИВНЫЕ РАЗРАБОТКИ В СФЕРЕ ОБОРУДОВАНИЯ ДЛЯ ПЕРЕ	ДАЧИ И
РАСПРЕДЕЛЕНИЯ ЭЛЕКТРОЭНЕРГИИ.	

РАСПРЕДЕЛЕПИЛ ЭЛЕКТРОЭПЕРТИИ.					
Выключатели постоянного тока среднего напряжения					
Способы повышения надежности					
Разработка оборудования со сниженным воздействием на окружающую среду					
Альтернативы элегазу (SF6) как дугогасящей и изолирующей среде					

ПТ 2: УПРАВЛЕНИЕ СРОКОМ СЛУЖБЫ ОБОРУДОВАНИЯ ДЛЯ ПЕРЕДАЧИ И РАСПРЕДЕЛЕНИЯ ЭЛЕКТРОЭНЕРГИИ.

Диагностика, прогнозирование и мониторинг состояния оборудования
Влияние окружающих и эксплуатационных условий
Опыт и меры предотвращения избыточных нагрузок и перегрузок

ПТ 3: ВЛИЯНИЕ РАСПРЕДЕЛЕННЫХ ВОЗОБНОВЛЯЕМЫХ ИСТОЧНИКОВ И НАКОПИТЕЛЕЙ ЭНЕРГИИ НА ОБОРУДОВАНИЕ МАГИСТРАЛЬНЫХ И РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЕЙ.

Новые и	перспективные т	ехнологии для ко	ммутационн	ЫΧ	аппарато	ов и другого	оборудов	ания	<u>[</u>
I Создание «интеллектуального» оборудования									
Влияние	распределенных	возобновляемых	источников	И	систем	накопления	энергии	на	требования,
предъявляемые к оборудованию									

ИК А3: планы на будущее

Управление сроком службы высоковольтного оборудования: детальный анализ опыта разных компаний по эксплуатации в/в оборудования с оценкой состояния и контролем старения, опыт применения различных средств и методов по предотвращению последствий старения оборудования и его деградации.

Более глубокое внимание к проблемам, связанным с эксплуатацией оборудования средних классов напряжения: надежность, старение, предотвращение аварий.

Более подробно с представленными на Сессии СИГРЭ докладами, выступлениями в дискуссиях участников заседаний можно ознакомиться по публикациям в журналах:

- «Энергетик»,
- -«РУМ»,

а также на сайте РНК СИГРЭ:

http://cigre.ru/press_centre/reports/

